General sheaves over weighted projective lines
نویسندگان
چکیده
منابع مشابه
Koszul Algebras and Sheaves over Projective Space
We are going to show that the sheafication of graded Koszul modules KΓ over Γn = K [x0, x1...xn] form an important subcategory ∧ KΓ of the coherents sheaves on projective space, Coh(P n). One reason is that any coherent sheave over P n belongs to ∧ KΓup to shift. More importantly, the category KΓ allows a concept of almost split sequence obtained by exploiting Koszul duality between graded Kosz...
متن کاملProjective Representations I. Projective lines over rings
We discuss representations of the projective line over a ring R with 1 in a projective space over some (not necessarily commutative) field K. Such a representation is based upon a (K,R)-bimodule U . The points of the projective line over R are represented by certain subspaces of the projective space P(K,U ×U) that are isomorphic to one of their complements. In particular, distant points go over...
متن کاملCohomological invariants of coherent sheaves over projective schemes: a survey
We give a survey on certain results related to the cohomology of projective schemes with coefficients in coherent sheaves. In particular we present results on cohomological patterns, cohomological Hilbert functions and cohomological Hilbert polynomials. Bounding results for Castelnuovo-Mumford regularities, Severi coregularities and cohomological postulation numbers are discussed. Moreover, a n...
متن کاملOn the semistability of instanton sheaves over certain projective varieties
We show that instanton bundles of rank r ≤ 2n − 1, defined as the cohomology of certain linear monads, on an n-dimensional projective variety with cyclic Picard group are semistable in the sense of MumfordTakemoto. Furthermore, we show that rank r ≤ n linear bundles with nonzero first Chern class over such varieties are stable. We also show that these bounds are sharp. 2000 MSC: 14J60; 14F05
متن کاملModuli Space of Principal Sheaves over Projective Varieties
Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan’s notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2008
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm113-1-8